

LTG Incorporated

**Technical Brochure** 

# LTG Air-Water Systems

## LTG Induction

## Induction units



Sill installation





Page

## Induction units for perimeter installation

|                            | Content                                        |
|----------------------------|------------------------------------------------|
| LTG Comfort Air Technology | Induction units                                |
|                            | Type HFG-0 2-pipe system                       |
| Air-Water-Systems          | Type HFG-0 4-pipe system                       |
|                            | Type HFK-0 4-pipe system                       |
|                            | Type HFS 4-pipe system                         |
|                            | Type HFG with bypass 2-pipe system             |
| Air Diffusers              | Type HFL 4-pipe system                         |
|                            | Type HFH 4-pipe system                         |
|                            | Type QHG perimeter displacement induction unit |
|                            | Capacity charts                                |
| Air Distribution           | Example for selection                          |
| All Distribution           | Connection of units                            |
|                            | Damper actuators                               |
|                            | Specifications and schedules of prices         |

#### Notes

Dimensions stated in this brochure are in inches and mm.

Dimensions stated in this brochure are subject to <u>General</u> <u>Tolerances</u> according to DIN ISO 2768-vL.

For the outlet grille <u>special tolerances</u> stated in the drawing apply.

<u>Straightness and twist tolerances</u> for extruded aluminum profiles according to DIN EN 12020-2.

The <u>surface</u> finish is designed to meet the requirements for applications in buildings - room climate according to DIN 1946 part 2. Other requirements on request.

The actual <u>specifications</u> are available as a word document at your local distributor or at www.LTG-INC.net.



LTG offers air distribution with various flow patterns:

- Mixed/displacement flow from the sill
- tangential flow from the sill
- Indivent<sup>®</sup> flow from the ceiling
- displacement air flow from the sill

LTG-Klimavent<sup>®</sup> units are induction units for medium/highpressure air conditioning systems.

The induction system is a combined air and water system:

- The air system ensures ventilation and room air humidity control.
- The water system, which is very economical for the transport of energy, additionally heats or cools the air using heat exchangers.

This provides the two most significant features of the induction unit: energy-saving operation and low space requirements.



Klimavent<sup>®</sup> induction units with casing

#### Models and sizes

LTG offers differents models and sizes for any application. The main distinctive feature of the LTG induction units is the way the temperature is controlled.

Each of the LTG induction units is available in five sizes: 500 - 630 - 800 - 1000 - 1250.

#### Two-pipe system

The induction unit has only one heat exchanger through which chilled water flows for cooling and hot water for heating. Therefore, it is only possible to either heat or cool within a single water circuit.

#### Four-pipe system

The induction unit has two separate water systems, one for heating, the other one for cooling. Therefore, chilled and hot water will always remain separated. The four-pipe system fulfills all requirements on varying loads and small control zones.

#### Valve control (water-side control)

The heating or cooling output of the heat exchanger is controlled by modifying the water flow.

#### Damper control (air-side control)

The heating or cooling output is controlled by modifying the flow of secondary air. Adjustable dampers guide the air stream through the cooling or heating coil or they divert the secondary air through a bypass around the heat exchangers.

#### Advantages

- High cooling and heating capacity due high performance heat exchanger
- Low energy consumption due to high capacity natural convection
- Low noise due to special nozzle design and arrangement of nozzles.
- Flexible nozzle assembly

due to the availability of several sets of nozzles which may also be combined, resulting in a particularly advantageous room air flow pattern to meet any demand.

• No sequence overlaps

The actuator of the air-side controlled damper is designed to make simultaneous heating and cooling of the unit impossible.

• High operational reliability

The air dampers are mounted on robust shafts with lowfriction ball bearings.

Maintenance-free actuators

The electric and pneumatic actuators for all control types are reliable and maintenance-free.

High induction ratio

due to optimum aerodynamic energy conversion of the primary air.

Wide range of models

The wide selection of models includes units to meet all demands:

- air-side (damper) or water-side (valve) control
- for two-pipe or four-pipe systems

- each model is available in different sizes.

Optimized selection

Klimavent  ${}^{\textcircled{B}}$  induction units are dimensioned using special LTG selection software.

#### • Fire safety

due to primary air nozzles of aluminum and primary air sockets of sheet metal (on request).



#### Mode of operation

The primary air (usually the outside air requirement) from the central air conditioning unit is pushed through nozzles at high speed. This causes secondary air to be pulled in from the room.

The secondary air flows through a heat exchanger and is being heated or cooled.

Then, the primary air is mixed with the heated or cooled secondary air inside the unit and flows into the room through an outlet grille or diffuser.



Mode of operation of LTG induction unit type HFH

#### Room airflow

#### Accessories, special versions

(see brochure: Accessories for LTG A/C systems)

- Units without secondary air filter and safety grille on the outlet (standard is with filter and grille).
- Condensate pan with drainage connection.
- Balancing device for the primary air connection.
- For water-side connection of the unit: screw fitting 3/8" or 1/2" with or without air vents, flexible connecting hoses with and without air vent.
- Aluminum outlet grille.
- Straight discharge neck (length 3" or 4.5").
- Air connection from below (standard: on the side).
- Primary air nozzles of aluminum, primary air socket of sheet metal for increased fire safety.
- Various installation types: wall mounting brackets or floor stands.
- Air outlet grille and frame.
- Thermostat connection with probe holder inside the pipe.
- Controls



Room airflow of induction units with a tangential air flow (smoke test pictures in three time intervals)



Control of induction unit type HFH, mode of operation

© LTG Incorporated • PO Box 2889 • Spartanburg, S.C. 29304, USA Phone +1 864 599-6340, Fax +1 864-6344 • info@LTG-INC.net • www.LTG-INC.net Former editions are invalid • Subject to technical modifications Induction sill -USA-TP (08/11)



## Induction units for perimeter installation Type HFG-0, two-pipe system – cooling or heating

#### **Specification**

Induction unit with one heat exchanger for heating or cooling the secondary air. Central water-side control. Vertical or horizontal installation. Air connection on the right, left or from below. Water connection on the right or left.

#### Dimensions

| Size | A      | B      | <b>C</b> | D      | E      |
|------|--------|--------|----------|--------|--------|
|      | [inch] | [inch] | [inch]   | [inch] | [inch] |
|      | [mm]   | [mm]   | [mm]     | [mm]   | [mm]   |
| 500  | 19.57  | 18.39  | 20.83    | 24.53  | 23.03  |
|      | (497)  | (467)  | (529)    | (623)  | (585)  |
| 630  | 25.28  | 24.09  | 26.53    | 28.27  | 28.74  |
|      | (642)  | (612)  | (674)    | (718)  | (730)  |
| 800  | 31.38  | 30.2   | 32.64    | 34.37  | 34.84  |
|      | (797)  | (767)  | (829)    | (873)  | (885)  |
| 1000 | 39.25  | 38.07  | 40.51    | 42.24  | 42.72  |
|      | (997)  | (967)  | (1029)   | (1073) | (1085) |
| 1250 | 48.9   | 47.72  | 50.16    | 51.89  | 52.56  |
|      | (1242) | (1212) | (1274)   | (1318) | (1335) |

#### Selection

The technical specifications on the following page are valid under the following conditions:

- Selection of unit: for standard water flow rates
  - with filter
  - with rubber nozzles
  - with air outlet neck
  - without casing

Corrections for other water quantities, see page 23.

Without filter: output increases by 5%.

With aluminum nozzles: sound power level plus 2 - 3 dB(A).

According to room configuration, sound pressure level reduced by 2 - 7 dB(A).

For other conditions the stated performance data may vary.

The heating performance data for natural convection  $Q_{Ec}$  are based on the following:

Room air temperature 68 °F (at standard water flow rate) Water supply temperature 158 °F  $\rightarrow \Delta t = 90 F$ 





## Induction units for perimeter installation Type HFG-0, two-pipe system – cooling or heating

gpm

gpm

#### Technical data size 500

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t⁻¹ |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------|
| 0.8                            | 18<br>24<br>29          | 26<br>25<br>28             |    | 19.0<br>24.6<br>32.2                              | 55.0<br>62.5<br>66.3                              | 55.0<br>62.5<br>66.3                  |
| 1.0                            | 18<br>24<br>29          | 28<br>27<br>29             |    | 19.0<br>24.6<br>32.2                              | 56.9<br>64.4<br>70.1                              | 56.9<br>64.4<br>70.1                  |
| 1.2                            | 18<br>24<br>29<br>35    | 29<br>32<br>30<br>33       |    | 19.0<br>24.6<br>32.2<br>37.9                      | 58.8<br>68.2<br>73.9<br>77.7                      | 58.8<br>68.2<br>73.9<br>77.7          |

| Q <sub>Ec</sub>            |     | = 1,430 BTU/h        |
|----------------------------|-----|----------------------|
| m                          |     | = 24.2 lbs           |
| ∆ <b>p<sub>w</sub></b> at  | Woc | = 7.2 feet with 0.88 |
| ∆ <b>p</b> <sub>w</sub> at | Woh | = 6.0 feet with 0.88 |

#### Technical data size 630

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 24<br>29<br>35          | 27<br>26<br>28             |    | 24.6<br>32.2<br>37.9                              | 72.0<br>79.6<br>85.3                              | 72.0<br>79.6<br>85.3                              |
| 1.0                            | 24<br>29<br>35          | 29<br>31<br>29             |    | 24.6<br>32.2<br>37.9                              | 75.8<br>85.3<br>91.0                              | 75.8<br>85.3<br>91.0                              |
| 1.2                            | 24<br>29<br>35<br>41    | 31<br>33<br>31<br>33       |    | 24.6<br>32.2<br>37.9<br>43.6                      | 77.7<br>87.2<br>94.8<br>98.6                      | 77.7<br>87.2<br>94.8<br>98.6                      |

| Q <sub>Ec</sub>           |     | = 1,716 BTU/h            |
|---------------------------|-----|--------------------------|
| m                         |     | = 29.7 lbs               |
| ∆ <b>p<sub>w</sub></b> at | Woc | = 7.2 feet with 1.10 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh | = 6.0 feet with 1.10 gpm |

#### Technical data size 800

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm]       | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t⁻¹ |  |
|--------------------------------|-------------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------|--|
| 0.8                            | 29<br>38<br>47                | 28<br>28<br>31             |    | 32.2<br>41.7<br>51.2                              | 89.1<br>102.4<br>109.9                            | 89.1<br>102.4<br>109.9                |  |
| 1.0                            | 29<br>38<br>47                | 30<br>33<br>32             |    | 32.2<br>41.7<br>51.2                              | 92.9<br>108.0<br>115.6                            | 92.9<br>108.0<br>115.6                |  |
| 1.2                            | 29<br>38<br>47<br>53          | 32<br>34<br>33<br>35       |    | 32.2<br>41.7<br>51.2<br>56.9                      | 96.7<br>111.8<br>119.4<br>125.1                   | 96.7<br>111.8<br>119.4<br>125.1       |  |
| Q <sub>Ec</sub>                | c = 2,023 BTU/h<br>= 36 3 lbs |                            |    |                                                   |                                                   |                                       |  |

| m                         |     | = 36.3 lbs               |
|---------------------------|-----|--------------------------|
| ∆ <b>p<sub>w</sub></b> at | Woc | = 7.2 feet with 1.32 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh | = 6.0 feet with 1.32 gpm |

#### Technical data size 1000

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h-∆t <sup>-1</sup> |  |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|
| 0.8                            | 38<br>47<br>59          | 30<br>30<br>33             |    | 41.7<br>51.2<br>62.5                              | 113.7<br>125.1<br>134.6                           | 113.7<br>125.1<br>134.6                           |  |
| 1.0                            | 38<br>47<br>59          | 32<br>31<br>34             |    | 41.7<br>51.2<br>62.5                              | 117.5<br>130.8<br>142.2                           | 117.5<br>130.8<br>142.2                           |  |
| 1.2                            | 38<br>47<br>59<br>65    | 33<br>36<br>35<br>37       |    | 41.7<br>51.2<br>62.5<br>70.1                      | 121.3<br>136.5<br>147.8<br>151.6                  | 121.3<br>136.5<br>147.8<br>151.6                  |  |
| QEa                            | = 2 453 BTU/h           |                            |    |                                                   |                                                   |                                                   |  |

| Q <sub>Ec</sub> | = 2,453 |
|-----------------|---------|
| m               | = 42.9  |
|                 |         |

= 42.9 lbs

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oc}} = 7.2$  feet with 1.54 gpm  $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}} = 6.0$  feet with 1.54 gpm

#### Technical data size 1250

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 47<br>59<br>74          | 32<br>32<br>36             |    | 51.2<br>62.5<br>79.6                              | 144.1<br>161.1<br>174.4                           | 144.1<br>161.1<br>174.4                           |
| 1.0                            | 47<br>59<br>74          | 33<br>36<br>37             |    | 51.2<br>62.5<br>79.6                              | 149.7<br>168.7<br>182.0                           | 149.7<br>168.7<br>182.0                           |
| 1.2                            | 47<br>59<br>74<br>88    | 34<br>37<br>38<br>41       |    | 51.2<br>62.5<br>79.6<br>94.8                      | 155.4<br>174.4<br>189.5<br>200.9                  | 155.4<br>174.4<br>189.5<br>200.9                  |

 $Q_{Ec}$  = 2,975 BTU/h

 m
 = 50.6 lbs

  $\Delta p_w$  at  $w_{oc}$  = 7.2 feet with 1.85 gpm

  $C_{0}$  fact with 1.85 gpm

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$  = 6.0 feet with 1.85 gpm

- Δp static pressure at the primary air socket
- **V**<sub>P</sub> primary air flow rate (± 10 %)
- L<sub>wA</sub> sound power (± 3 dB)
- **Q**<sub>P</sub> cool. capacity of primary air (fresh air) (± 5 %)
- **Q**<sub>c</sub> cool. cap., secondary air (heat exch.) (± 5 %)
- $Q_h$  heating capacity, secondary air (± 5 %)
- Q<sub>Ec</sub> heating capacity with natural convection
- m weight
- woc standard water flow rate at cooling capacity
- woh standard water flow rate at heating capacity
- temperature difference between air temperature entering the heat exchanger and water supply temperature
- Δtp temperature difference between room air and primary air
- $\Delta p_w$  water-side pressure loss



## Induction units for perimeter installation Type HFG-0, four-pipe system – cooling and heating

#### Specification

Induction unit with one heat exchanger for heating and cooling the secondary air, for high outputs at low water flow rates.

Water-side control by valves.

Vertical or horizontal installation.

Air connection on the right, left or from below.

Water connection on the right or left.

#### Dimensions

| Size | A      | B      | <b>C</b> | D      | E      |
|------|--------|--------|----------|--------|--------|
|      | [inch] | [inch] | [inch]   | [inch] | [inch] |
|      | [mm]   | [mm]   | [mm]     | [mm]   | [mm]   |
| 500  | 19.57  | 18.39  | 20.83    | 25.67  | 23.03  |
|      | (497)  | (467)  | (529)    | (652)  | (585)  |
| 630  | 25.28  | 24.09  | 26.53    | 31.38  | 28.74  |
|      | (642)  | (612)  | (674)    | (797)  | (730)  |
| 800  | 31.38  | 30.2   | 32.64    | 33.54  | 34.84  |
|      | (797)  | (767)  | (829)    | (852)  | (885)  |
| 1000 | 39.25  | 38.07  | 40.51    | 45.35  | 42.72  |
|      | (997)  | (967)  | (1029)   | (1152) | (1085) |
| 1250 | 48.9   | 47.72  | 50.16    | 55.2   | 52.56  |
|      | (1242) | (1212) | (1274)   | (1402) | (1335) |

#### Selection

The technical specifications on the following page are valid under the following conditions:

- Selection of unit: for standard water flow rates
  - with filter
  - with rubber nozzles
  - with air outlet neck
  - without casing

Corrections for other water quantities, see page 25.

Without filter: output increases by 5%.

With aluminum nozzles: sound power level + 2-3 dB(A).

According to room configuration, sound pressure level reduced by 2 - 7 dB(A).

For other conditions the stated performance data may vary.

The heating performance data for natural convection  $Q_{\text{Ek}}$  are based on the following:

Room air temperature 68 °F (at standard water flow rate) Water supply temperature 158 °F  $\rightarrow \Delta t = 90 F$ 





## Induction units for perimeter installation Type HFG-0, four-pipe system – cooling and heating

#### Technical data size 500

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 18<br>24<br>29          | 26<br>25<br>28             |    | 19.0<br>24.6<br>32.2                              | 43.6<br>49.3<br>53.1                              | 36.0<br>41.7<br>45.5                              |
| 1.0                            | 18<br>24<br>29          | 28<br>27<br>29             |    | 19.0<br>24.6<br>32.2                              | 43.6<br>51.2<br>55.0                              | 37.9<br>41.7<br>47.4                              |
| 1.2                            | 18<br>24<br>29<br>35    | 29<br>32<br>30<br>33       |    | 19.0<br>24.6<br>32.2<br>37.9                      | 47.4<br>55.0<br>60.7<br>62.5                      | 39.8<br>47.4<br>51.2<br>53.1                      |

| Q <sub>Ec</sub>           |     | = 1,170 BTU/h            |
|---------------------------|-----|--------------------------|
| m                         |     | = 24.2 lbs               |
| ∆ <b>p<sub>w</sub></b> at | Woc | = 0.6 feet with 0.35 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh | = 0.3 feet with 0.35 gpm |

#### Technical data size 630

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 24<br>29<br>35          | 27<br>26<br>28             |    | 24.6<br>32.2<br>37.9                              | 56.9<br>62.5<br>68.2                              | 47.4<br>53.1<br>56.9                              |
| 1.0                            | 24<br>29<br>35          | 29<br>31<br>29             |    | 24.6<br>32.2<br>37.9                              | 58.8<br>64.4<br>70.1                              | 49.3<br>55.0<br>58.8                              |
| 1.2                            | 24<br>29<br>35<br>41    | 31<br>33<br>31<br>33       |    | 24.6<br>32.2<br>37.9<br>43.6                      | 62.5<br>70.1<br>75.8<br>79.6                      | 51.2<br>58.8<br>64.4<br>66.3                      |

| Q <sub>Ec</sub>           |     | = 1,406 BTU/h            |
|---------------------------|-----|--------------------------|
| m                         |     | = 29.7 lbs               |
| ∆ <b>p<sub>w</sub></b> at | Woc | = 1.0 feet with 0.44 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh | = 0.7 feet with 0.44 gpm |

#### Technical data size 800

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm]        | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |  |
|--------------------------------|--------------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|
| 0.8                            | 29<br>38<br>47                 | 28<br>28<br>31             |    | 32.2<br>41.7<br>51.2                              | 70.1<br>81.5<br>87.2                              | 60.7<br>68.2<br>73.9                              |  |
| 1.0                            | 29<br>38<br>47                 | 30<br>33<br>32             |    | 32.2<br>41.7<br>51.2                              | 73.9<br>83.4<br>89.1                              | 62.5<br>70.1<br>75.8                              |  |
| 1.2                            | 29<br>38<br>47<br>53           | 32<br>34<br>33<br>35       |    | 32.2<br>41.7<br>51.2<br>56.9                      | 81.5<br>89.1<br>96.7<br>102.4                     | 66.3<br>73.9<br>81.5<br>87.2                      |  |
| Q <sub>Ec</sub><br>m           | Ec = 1,658 BTU/h<br>= 36.3 lbs |                            |    |                                                   |                                                   |                                                   |  |

| m                         |     | = 36.3 lbs               |
|---------------------------|-----|--------------------------|
| ∆ <b>p<sub>w</sub></b> at | Woc | = 1.7 feet with 0.53 gpm |

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$  = 1.1 feet with 0.53 gpm

#### Technical data size 1000

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |  |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|
| 0.8                            | 38<br>47<br>59          | 30<br>30<br>33             |    | 41.7<br>51.2<br>62.5                              | 94.8<br>104.2<br>113.7                            | 79.6<br>87.2<br>94.8                              |  |
| 1.0                            | 38<br>47<br>59          | 32<br>31<br>34             |    | 41.7<br>51.2<br>62.5                              | 96.7<br>106.1<br>115.6                            | 79.6<br>89.1<br>96.7                              |  |
| 1.2                            | 38<br>47<br>59<br>65    | 33<br>36<br>35<br>37       |    | 41.7<br>51.2<br>62.5<br>70.1                      | 104.2<br>113.7<br>127.0<br>138.4                  | 87.2<br>96.7<br>106.1<br>113.7                    |  |
| QEa                            | = 1 996 BTU/h           |                            |    |                                                   |                                                   |                                                   |  |

| Q <sub>Ec</sub> | = 1,996 B  |  |  |  |
|-----------------|------------|--|--|--|
| m               | = 42.9 lbs |  |  |  |
|                 | 001        |  |  |  |

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oc}}$  = 3.3 feet with 0.66 gpm  $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$  = 2.0 feet with 0.66 gpm

## Technical data size 1250

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 47<br>59<br>74          | 32<br>32<br>36             |    | 51.2<br>62.5<br>79.6                              | 121.3<br>134.6<br>147.8                           | 100.5<br>111.8<br>123.2                           |
| 1.0                            | 47<br>59<br>74          | 33<br>36<br>37             |    | 51.2<br>62.5<br>79.6                              | 121.3<br>138.4<br>149.7                           | 102.4<br>115.6<br>125.1                           |
| 1.2                            | 47<br>59<br>74<br>88    | 34<br>37<br>38<br>41       |    | 51.2<br>62.5<br>79.6<br>94.8                      | 134.6<br>151.6<br>164.9<br>174.4                  | 111.8<br>127.0<br>136.5<br>145.9                  |

- **Δp** static pressure at the primary air socket
- **V**<sub>P</sub> primary air flow rate (± 10 %)
- $L_{wA}$  sound power (± 3 dB)
- **Q**<sub>P</sub> cool. capacity of primary air (fresh air) (± 5 %)
- **Q**<sub>c</sub> cool. cap., secondary air (heat exch.) (± 5 %)
- **Q**<sub>h</sub> heating capacity, secondary air (± 5 %)
- **Q<sub>Ec</sub>** heating capacity with natural convection
- m weight
- woc standard water flow rate at cooling capacity
- woh standard water flow rate at heating capacity
- temperature difference between air temperature entering the heat exchanger and water supply temperature
- Δtp temperature difference between room air and primary air
- $\Delta p_w$  water-side pressure loss



## Induction units for perimeter installation Type HFK-0, four-pipe system – cooling and heating

#### Specification

Induction unit with one heat exchanger for heating and cooling the secondary air, for high outputs at low water flow rates.

Water-side control by valves.

Vertical or horizontal installation.

Air connection on the right, left or from below.

Water connection on the right or left.

#### Dimensions

| Size | A      | B      | <b>C</b> | D      | E      |
|------|--------|--------|----------|--------|--------|
|      | [inch] | [inch] | [inch]   | [inch] | [inch] |
|      | [mm]   | [mm]   | [mm]     | [mm]   | [mm]   |
| 630  | 25.28  | 24.09  | 26.53    | 31.38  | 28.74  |
|      | (642)  | (612)  | (674)    | (797)  | (730)  |
| 800  | 31.38  | 30.2   | 32.64    | 37.48  | 34.84  |
|      | (797)  | (767)  | (829)    | (952)  | (885)  |
| 1000 | 39.25  | 38.07  | 40.51    | 45.35  | 42.72  |
|      | (997)  | (967)  | (1029)   | (1152) | (1085) |
| 1250 | 48.9   | 47.72  | 50.16    | 55.2   | 52.56  |
|      | (1242) | (1212) | (1274)   | (1402) | (1335) |

#### Selection

The technical specifications on the following page are valid under the following conditions:

Selection of unit: - for standard water flow rates

- with filter
- with rubber nozzles
- with air outlet neck
- without casing

Corrections for other water quantities, see page 24 and 26. Without filter: output increases by 5%.

With aluminum nozzles: sound power level plus 2 - 3 dB(A).

According to room configuration, sound pressure level reduced by 2 - 7 dB(A).

For other conditions the stated performance data may vary. The heating performance data for natural convection  $Q_{Ec}$  are based on the following:

Room air temperature 68 °F (at standard water flow rate) Water supply temperature 158 °F  $\rightarrow \Delta t = 90 F$ 



© LTG Incorporated • PO Box 2889 • Spartanburg, S.C. 29304, USA Phone +1 864 599-6340, Fax +1 864-6344 • info@LTG-INC.net • www.LTG-INC.net Former editions are invalid • Subject to technical modifications



## Induction units for perimeter installation Type HFK-0, four-pipe system – cooling and heating

#### Technical data size 630

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.6                            | 24<br>29<br>35          | 27<br>27<br>28             |    | 24.6<br>32.2<br>37.9                              | 64.4<br>70.1<br>72.0                              | 36.0<br>37.9<br>41.7                              |
| 0.8                            | 24<br>29<br>35          | 27<br>28<br>29             |    | 24.6<br>32.2<br>37.9                              | 66.3<br>73.9<br>79.6                              | 37.9<br>39.8<br>41.7                              |
| 1.0                            | 24<br>29<br>35          | 28<br>29<br>30             |    | 24.6<br>32.2<br>37.9                              | 70.1<br>77.7<br>83.4                              | 37.9<br>41.7<br>43.6                              |
| 1.2                            | 29<br>35<br>41          | 29<br>30<br>31             |    | 24.6<br>32.2<br>37.9                              | 79.6<br>87.2<br>91.0                              | 43.6<br>45.5<br>47.4                              |



 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oc}}$ 

= 1.460 BTU/h

= 30.8 lbs

= 0.9 feet with 0.53 gpm

= 0.6 feet with 0.44 gpm  $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$ 

#### **Technical data size 800**

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC    | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t⁻1 |
|--------------------------------|-------------------------|----------------------------|-------|---------------------------------------------------|---------------------------------------------------|---------------------------------------|
| 0.6                            | 29<br>38<br>47          | 27<br>28<br>29             |       | 32.2<br>41.7<br>51.2                              | 81.5<br>89.1<br>92.9                              | 45.5<br>47.4<br>47.4                  |
| 0.8                            | 29<br>38<br>47          | 27<br>29<br>30             |       | 32.2<br>41.7<br>51.2                              | 83.4<br>92.9<br>100.5                             | 47.4<br>49.3<br>51.2                  |
| 1.0                            | 29<br>38<br>47          | 29<br>30<br>32             |       | 32.2<br>41.7<br>51.2                              | 91.0<br>98.6<br>104.2                             | 49.3<br>51.2<br>55.0                  |
| 1.2                            | 38<br>47<br>53          | 31<br>33<br>34             |       | 41.7<br>51.2<br>56.9                              | 100.5<br>108.0<br>111.8                           | 53.1<br>56.9<br>58.8                  |
|                                |                         | 4                          | 056 D |                                                   |                                                   |                                       |

| Q <sub>Ec</sub>           |     | = 1,856 BTU/h            |
|---------------------------|-----|--------------------------|
| m                         |     | = 46.2 lbs               |
| ∆ <b>p<sub>w</sub></b> at | Woc | = 1.4 feet with 0.66 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh | = 0.9 feet with 0.55 gpm |

<sup>1)</sup> with 61 °F water supply temperature, 79 °F room temp. at a height of 3.6 ft and non-condensing operation

<sup>2)</sup> with 61 °F primary air temp. and 79 °F air inlet temp.

<sup>3)</sup> with 158 °F water supply temp. and 68 °F air inlet temp. Values are given for the following conditions:

- Standard water flow rate

- Unit with filter Gs/K80z

- With primary air nozzles of plastic

- With discharge duct 2.76"

- Without casing

Reduced capacity (depending on exact operating point)

|   |                                 | 1 01 /             |   |
|---|---------------------------------|--------------------|---|
| - | without air outlet socket       | ca. 5 %            |   |
| - | without filter                  | < 5 %              |   |
| - | with mixed/displacement flow    |                    |   |
|   | deflector in the discharge duct | up to approx. 20 % | 6 |
|   |                                 |                    |   |

#### Technical data size 1000

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.6                            | 35<br>44<br>53          | 28<br>29<br>30             |    | 37.9<br>49.3<br>56.9                              | 102.4<br>109.9<br>113.7                           | 55.0<br>56.9<br>62.5                              |
| 0.8                            | 35<br>44<br>53          | 28<br>29<br>31             |    | 37.9<br>49.3<br>56.9                              | 104.2<br>115.6<br>127.0                           | 58.8<br>62.5<br>66.3                              |
| 1.0                            | 35<br>44<br>53          | 30<br>31<br>33             |    | 37.9<br>49.3<br>56.9                              | 113.7<br>123.2<br>132.7                           | 60.7<br>64.4<br>66.3                              |
| 1.2                            | 44<br>53<br>59          | 32<br>34<br>36             |    | 49.3<br>56.9<br>62.5                              | 125.1<br>134.6<br>138.4                           | 68.2<br>70.1<br>72.0                              |

**Q**Ec

m

= 1,911 BTU/h = 55.0 lbs

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oc}}$ 

= 2.2 feet with 0.79 gpm = 1.2 feet with 0.64 gpm

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$ 

Technical data size 1250

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t⁻1 |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------|
| 0.6                            | 35<br>47<br>59          | 27<br>28<br>30             |    | 37.9<br>51.2<br>62.5                              | 128.9<br>140.3<br>151.6                           | 60.7<br>66.3<br>68.2                  |
| 0.8                            | 35<br>47<br>59          | 28<br>29<br>31             |    | 37.9<br>51.2<br>62.5                              | 136.5<br>149.7<br>161.1                           | 62.5<br>68.2<br>72.0                  |
| 1.0                            | 35<br>47<br>59          | 29<br>30<br>32             |    | 37.9<br>51.2<br>62.5                              | 142.2<br>155.4<br>168.7                           | 66.3<br>72.0<br>79.6                  |
| 1.2                            | 47<br>59<br>71          | 31<br>33<br>36             |    | 51.2<br>62.5<br>77.7                              | 159.2<br>176.3<br>180.1                           | 75.8<br>77.7<br>79.6                  |

 $Q_{Ec}$ m

#### = 2,323 BTU/h

= 61.6 lbs

= 4.0 feet with 1.06 gpm  $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oc}}$ 

= 1.7 feet with 0.75 gpm  $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$ 

#### Legend

Δp - static pressure at the primary air socket

- primary air flow rate (± 10 %) VP
- sound power (± 3 dB) L<sub>wA</sub>
- Q<sub>P</sub> - cooling capacity of primary air (fresh air) (± 5 %)
- cooling cap., secondary air (heat exch.) (± 5 %)
  heating capacity, secondary air (± 5 %)
  heating capacity with natural convection Qk
- **Q**h
- $\mathbf{Q}_{\mathbf{E}\mathbf{C}}$
- weight m
- standard water flow rate at cooling capacity Woc
- w<sub>oh</sub> standard water flow rate at heating capacity -
- Δť temperature difference between \_
  - air temperature entering the heat exchanger and water supply temperature
- temperature difference between room air Δt<sub>P</sub> and primary air
- water-side pressure loss Δp<sub>w</sub>



## Induction units for perimeter installation Type HFS, four-pipe system – cooling and heating

#### Specification

Space-saving induction unit with an extremely low installation height of 5.87" (149 mm).

With one heat exchanger for heating and cooling the secondary air, for high outputs at low water flow rates (twopipe unit for cooling only on request).

Water-side control by valves.

Vertical installation.

Air connection on the right or left.

Water connection on the right or left.

#### Dimensions

| Size | A      | B      | <b>C</b> | D      | E      |
|------|--------|--------|----------|--------|--------|
|      | [inch] | [inch] | [inch]   | [inch] | [inch] |
|      | [mm]   | [mm]   | [mm]     | [mm]   | [mm]   |
| 500  | 19.57  | 18.39  | 20.83    | 24.53  | 23.03  |
|      | (497)  | (467)  | (529)    | (623)  | (585)  |
| 630  | 25.28  | 24.09  | 26.54    | 28.27  | 28.74  |
|      | (642)  | (612)  | (674)    | (718)  | (730)  |
| 800  | 31.38  | 30.2   | 32.64    | 34.37  | 34.84  |
|      | (797)  | (767)  | (829)    | (873)  | (885)  |
| 1000 | 39.25  | 38.1   | 40.51    | 42.24  | 42.72  |
|      | (997)  | (967)  | (1029)   | (1073) | (1085) |
| 1250 | 48.9   | 47.72  | 50.15    | 51.89  | 52.56  |
|      | (1242) | (1212) | (1274)   | (1318) | (1335) |

#### Selection

The technical specifications on the following page are valid under the following conditions:

- Selection of unit: for standard water flow rates
  - with filter
  - with rubber nozzles
  - with air outlet neck
  - without casing

Corrections for other water quantities, see page 25. Without filter: output increases by 5%.

With aluminum nozzles: sound power level plus 2 - 3 dB(A).

According to equipment, sound pressure level reduced by 2 - 7 dB(A).

For other conditions the stated performance data may vary. The heating performance data for natural convection  $Q_{Ec}$  are based on the following:

Room air temperature 68 °F (at standard water flow rate) Water supply temperature 158 °F  $\rightarrow \Delta t = 90 F$ 





## Induction units for perimeter installation Type HFS, four-pipe system – cooling and heating

#### Technical data size 500

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 15<br>24<br>32*         | 26<br>29<br>33             |    | 15.2<br>24.6<br>34.1                              | 36.0<br>41.7<br>45.5                              | 28.4<br>34.1<br>36.0                              |
| 1.0                            | 15<br>24<br>32*         | 27<br>30<br>34             |    | 15.2<br>24.6<br>34.1                              | 37.9<br>45.5<br>51.2                              | 30.3<br>36.0<br>41.7                              |
| 1.2                            | 15<br>24<br>32*<br>35*  | 28<br>31<br>35<br>36       |    | 15.2<br>24.6<br>34.1<br>37.9                      | 41.7<br>53.1<br>58.8<br>62.5                      | 32.2<br>41.7<br>47.4<br>49.3                      |

| Q <sub>Ec</sub>           |                 | = 1,170 BTU/h            |
|---------------------------|-----------------|--------------------------|
| m                         |                 | = 24.2 lbs               |
| ∆ <b>p<sub>w</sub></b> at | w <sub>oc</sub> | = 0.6 feet with 0.35 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh             | = 0.3 feet with 0.35 gpm |

#### Technical data size 630

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h-Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 18<br>26<br>35*         | 27<br>29<br>33             |    | 19.0<br>28.4<br>37.9                              | 43.6<br>51.2<br>60.7                              | 34.1<br>39.8<br>47.4                              |
| 1.0                            | 18<br>26<br>35*         | 28<br>30<br>34             |    | 19.0<br>28.4<br>37.9                              | 45.5<br>53.1<br>64.4                              | 36.0<br>41.7<br>51.2                              |
| 1.2                            | 18<br>26<br>35*<br>44*  | 29<br>31<br>35<br>37       |    | 19.0<br>28.4<br>37.9<br>47.4                      | 47.4<br>56.9<br>70.1<br>77.7                      | 37.9<br>45.5<br>55.0<br>60.7                      |
|                                |                         |                            |    |                                                   |                                                   |                                                   |

#### Technical data size 800

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |  |  |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|--|
| 0.8                            | 24<br>32<br>44*         | 28<br>30<br>34             |    | 24.6<br>34.1<br>47.4                              | 60.7<br>72.0<br>81.5                              | 47.4<br>56.9<br>64.4                              |  |  |
| 1.0                            | 24<br>32<br>44*         | 29<br>31<br>35             |    | 24.6<br>34.1<br>47.4                              | 60.7<br>75.8<br>87.2                              | 49.3<br>60.7<br>70.1                              |  |  |
| 1.2                            | 24<br>32<br>44*<br>53*  | 30<br>32<br>36<br>38       |    | 24.6<br>34.1<br>47.4<br>56.9                      | 64.4<br>79.6<br>92.9<br>100.5                     | 51.2<br>62.5<br>73.9<br>79.6                      |  |  |
| • - 1 659 BTU/b                |                         |                            |    |                                                   |                                                   |                                                   |  |  |

| ≪EC                        |     | = 1,000 D10/11           |
|----------------------------|-----|--------------------------|
| m                          |     | = 36.3 lbs               |
| ∆ <b>p<sub>w</sub></b> at  | Woc | = 1.7 feet with 0.53 gpm |
| ∆ <b>p</b> <sub>w</sub> at | Woh | = 1.1 feet with 0.53 gpm |

Technical data size 1000

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm]       | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |  |  |
|--------------------------------|-------------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|--|
| 0.8                            | 29<br>38<br>47*               | 29<br>30<br>36             |    | 32.2<br>41.7<br>51.2                              | 89.1<br>100.5<br>106.1                            | 70.1<br>79.6<br>83.4                              |  |  |
| 1.0                            | 29<br>38<br>47*               | 30<br>32<br>37             |    | 32.2<br>41.7<br>51.2                              | 92.9<br>104.2<br>113.7                            | 73.9<br>83.4<br>91.0                              |  |  |
| 1.2                            | 29<br>38<br>47*<br>59*        | 31<br>33<br>38<br>40       |    | 32.2<br>41.7<br>51.2<br>62.5                      | 98.6<br>109.9<br>117.5<br>123.2                   | 77.7<br>87.2<br>92.9<br>98.6                      |  |  |
| Q <sub>Ec</sub>                | Q <sub>EC</sub> = 1,996 BTU/h |                            |    |                                                   |                                                   |                                                   |  |  |

m = 42.9 lbs = 3.3 feet with 0.66 gpm ∆p<sub>w</sub> at w<sub>oc</sub>

= 2.0 feet with 0.66 gpm ∆p<sub>w</sub> at w<sub>oh</sub>

#### Technical data size 1250

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |  |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|
| 0.8                            | 38<br>47<br>59*         | 31<br>32<br>36             |    | 41.7<br>51.2<br>62.5                              | 119.4<br>125.1<br>134.6                           | 94.8<br>100.5<br>106.1                            |  |
| 1.0                            | 38<br>47<br>59*         | 32<br>34<br>39             |    | 41.7<br>51.2<br>62.5                              | 123.2<br>130.8<br>140.3                           | 98.6<br>104.2<br>111.8                            |  |
| 1.2                            | 38<br>47<br>59*<br>74*  | 33<br>35<br>40<br>42       |    | 41.7<br>51.2<br>62.5<br>79.6                      | 127.0<br>136.5<br>147.8<br>157.3                  | 100.5<br>108.0<br>117.5<br>125.1                  |  |
| Q <sub>Ec</sub>                | = 2,439  BTU/h          |                            |    |                                                   |                                                   |                                                   |  |

= 50.6 lbs = 5.4 feet with 0.79 gpm ∆p<sub>w</sub> at w<sub>oc</sub>  $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$ = 3.3 feet with 0.79 gpm

#### Legend

- **Δp** static pressure at the primary air socket
- **V**<sub>P</sub> primary air flow rate (± 10 %)
- L<sub>wA</sub> sound power (± 3 dB) Q<sub>P</sub> cool. capacity of primary air (fresh air) (± 5 %)
- **Q**<sub>c</sub> cool. capacity, secondary (heat exch.) (± 5 %)
- **Q**<sub>h</sub> heating capacity, secondary (± 5 %)
- **Q**<sub>Ec</sub> heating capacity with natural convection
- m weight
- woc standard water flow rate at cooling capacity
- woh standard water flow rate at heating capacity
- $\Delta t$  temperature difference between air temperature entering the heat exchanger and water supply temperature
- Δt<sub>P</sub> temperature difference between room air and primary air
- $\Delta p_w$  water-side pressure loss

\* Air flow rate only possible with the use of alu nozzles



## Induction units for perimeter installation Type HFS, four-pipe system – cooling and heating

#### **Serial connection**

If for reasons of space the induction units cannot be connected individually through an air distribution duct, several units with low primary air flow rates may be connected in a serial set-up. The maximum number of units depends on the primary air flow rate.

The first unit in air flow direction receives the full air flow rate, i.e. in case of a flow rate of 23.5 cfm  $(40 \text{ m}^3/\text{h})$  per unit and 5 units, e.g. a total flow rate of 118 cfm (200 m<sup>3</sup>/h).

Therefore, the air velocity entering the first unit is high and will produce the decisive flow noises for the overall sound level.

The pressure loss between the units is small.

The sound power increase depends on the primary air flow rate, the nozzle pressure, the number of units and the unit size.

#### Design example

Air flow rate per unit Total flow rate Sound power per unit

Increase of sound power level due to increased air speed Total sound power level (5 units): 23.5 cfm (40 m<sup>3</sup>/h) 118 cfm (200 m<sup>3</sup>/h) 28 dB(A)

32 dB(A) per unit 39 dB(A)



Installation example of serial connection: 5 HFS 1000 connected in series. Units with duct connection in the false floor.



## Induction units for perimeter installation Type HFG with bypass, two-pipe system - cooling and heating

#### **Specification**

Induction unit with one heat exchanger for heating or cooling the secondary air, for installation in window sills. Adjustment of the bypass dampers for air-side control with a built-in pneumatic or electric actuator. Air connection on the right, left or from below. Water connection on the right or left.

#### Dimensions

| Size | A      | B      | C      | D      | E      |
|------|--------|--------|--------|--------|--------|
|      | [inch] | [inch] | [inch] | [inch] | [inch] |
|      | [mm]   | [mm]   | [mm]   | [mm]   | [mm]   |
| 500  | 19.57  | 18.39  | 20.83  | 27.24  | 23.03  |
|      | (497)  | (467)  | (529)  | (692)  | (585)  |
| 630  | 25.28  | 24.09  | 26.53  | 32.96  | 28.74  |
|      | (642)  | (612)  | (674)  | (837)  | (730)  |
| 800  | 31.38  | 30.2   | 32.64  | 39.06  | 34.84  |
|      | (797)  | (767)  | (829)  | (992)  | (885)  |
| 1000 | 39.25  | 38.07  | 40.51  | 46.93  | 42.72  |
|      | (997)  | (967)  | (1029) | (1192) | (1085) |
| 1250 | 48.9   | 47.72  | 50.16  | 56.57  | 52.56  |
|      | (1242) | (1212) | (1274) | (1437) | (1335) |

#### Selection

The technical specifications on the following page are valid under the following conditions:

- Selection of unit: for standard water flow rates
  - with filter
  - with rubber nozzles
  - with air outlet neck
  - without casing

Corrections for other flow rates, see page 23.

Without filter: output increases by 5%.

With aluminum nozzles: sound power level + 2-3 dB(A).

According to room configuration, sound pressure level reduced by 2 - 7 dB(A).

For other conditions the stated performance data may vary.

The heating performance data for natural convection  $\mathsf{Q}_{\mathsf{Ec}}$  are based on the following:

Room air temperature 68 °F (at standard water flow rate) Water supply temperature 158 °F  $\rightarrow \Delta t = 90 F$ 





## Induction units for perimeter installation Type HFG with bypass, two-pipe system – cooling or heating

#### Technical data size 500

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 18<br>24<br>29          | 26<br>25<br>28             |    | 19.0<br>24.6<br>32.2                              | 53.1<br>62.5<br>66.3                              | 53.1<br>62.5<br>66.3                              |
| 1.0                            | 18<br>24<br>29          | 28<br>27<br>29             |    | 19.0<br>24.6<br>32.2                              | 56.9<br>64.4<br>70.1                              | 56.9<br>64.4<br>70.1                              |
| 1.2                            | 18<br>24<br>29<br>35    | 29<br>32<br>30<br>33       |    | 19.0<br>24.6<br>32.2<br>37.9                      | 58.8<br>68.2<br>73.9<br>77.7                      | 58.8<br>68.2<br>73.9<br>77.7                      |

| Q <sub>Ec</sub>           |     | = 812 BTU/h              |
|---------------------------|-----|--------------------------|
| m                         |     | = 24.2 lbs               |
| ∆ <b>p<sub>w</sub></b> at | Woc | = 7.2 feet with 0.88 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh | = 6.0 feet with 0.88 gpm |

#### Technical data size 630

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 24<br>29<br>35          | 27<br>26<br>28             |    | 24.6<br>32.2<br>37.9                              | 72.0<br>79.6<br>85.3                              | 72.0<br>79.6<br>85.3                              |
| 1.0                            | 24<br>29<br>35          | 29<br>31<br>29             |    | 24.6<br>32.2<br>37.9                              | 73.9<br>85.3<br>91.0                              | 73.9<br>85.3<br>91.0                              |
| 1.2                            | 24<br>29<br>35<br>41    | 31<br>33<br>31<br>33       |    | 24.6<br>32.2<br>37.9<br>43.6                      | 77.7<br>87.2<br>94.8<br>98.6                      | 77.7<br>87.2<br>94.8<br>98.6                      |

| Q <sub>Ec</sub>           |     | = 972 BTU/h              |
|---------------------------|-----|--------------------------|
| m                         |     | = 29.7 lbs               |
| ∆ <b>p<sub>w</sub></b> at | Woc | = 7.2 feet with 1.10 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh | = 6.0 feet with 1.10 gpm |

#### Technical data size 800

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t⁻¹ |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------|
| 0.8                            | 29<br>38<br>47          | 28<br>28<br>31             |    | 32.2<br>41.7<br>51.2                              | 89.1<br>102.4<br>109.9                            | 89.1<br>102.4<br>109.9                |
| 1.0                            | 29<br>38<br>47          | 30<br>33<br>32             |    | 32.2<br>41.7<br>51.2                              | 92.9<br>108.0<br>115.6                            | 92.9<br>108.0<br>115.6                |
| 1.2                            | 29<br>38<br>47<br>53    | 32<br>34<br>33<br>35       |    | 32.2<br>41.7<br>51.2<br>56.9                      | 96.7<br>111.8<br>119.4<br>125.1                   | 96.7<br>111.8<br>119.4<br>125.1       |
| Q <sub>Ec</sub>                | = 1,140 BTU/h           |                            |    |                                                   |                                                   |                                       |

|                           |     | -                        |
|---------------------------|-----|--------------------------|
| m                         |     | = 36.3 lbs               |
| ∆ <b>p<sub>w</sub></b> at | Woc | = 7.2 feet with 1.32 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh | = 6.0 feet with 1.32 gpm |

#### Technical data size 1000

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm]              | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |  |
|--------------------------------|--------------------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|
| 0.8                            | 38<br>47<br>59                       | 30<br>30<br>33             |    | 41.7<br>51.2<br>62.5                              | 113.7<br>125.1<br>134.6                           | 113.7<br>125.1<br>134.6                           |  |
| 1.0                            | 38<br>47<br>59                       | 32<br>31<br>34             |    | 41.7<br>51.2<br>62.5                              | 117.5<br>132.7<br>142.2                           | 117.5<br>132.7<br>142.2                           |  |
| 1.2                            | 38<br>47<br>59<br>65                 | 33<br>36<br>35<br>37       |    | 41.7<br>51.2<br>62.5<br>70.1                      | 121.3<br>136.5<br>147.8<br>151.6                  | 121.3<br>136.5<br>147.8<br>151.6                  |  |
| QEC                            | <b>Q</b> <sub>Ec</sub> = 1.375 BTU/h |                            |    |                                                   |                                                   |                                                   |  |

| Q <sub>Ec</sub> | = | 1 |
|-----------------|---|---|
| m               | = | 4 |

= 42.9 lbs

#### Technical data size 1250

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 47<br>59<br>74          | 32<br>32<br>36             |    | 51.2<br>62.5<br>79.6                              | 144.1<br>161.1<br>174.4                           | 144.1<br>161.1<br>174.4                           |
| 1.0                            | 47<br>59<br>74          | 33<br>36<br>37             |    | 51.2<br>62.5<br>79.6                              | 149.7<br>168.7<br>182.0                           | 149.7<br>168.7<br>182.0                           |
| 1.2                            | 47<br>59<br>74<br>88    | 34<br>37<br>38<br>41       |    | 51.2<br>62.5<br>79.6<br>94.8                      | 155.4<br>174.4<br>189.5<br>200.9                  | 155.4<br>174.4<br>189.5<br>200.9                  |

 $Q_{Ec}$  = 1,665 BTU/h

 m
 = 50.6 lbs

  $\Delta p_w$  at
  $w_{oc}$  = 7.2 feet with 1.85 gpm

  $\Delta p_w$  at
  $w_{oh}$  = 6.0 feet with 1.85 gpm

- **Δp** static pressure at the primary air socket
- **V**<sub>P</sub> primary air flow rate (± 10 %)
- L<sub>wA</sub> sound power (± 3 dB)
- **Q**<sub>P</sub> cool. capacity of primary air (fresh air) (± 5 %)
- **Q**<sub>c</sub> cool. cap., secondary air (heat exch.) (± 5 %)
- $Q_h$  heating capacity, secondary air (± 5 %)
- Q<sub>Ec</sub> heating capacity with natural convection
- m weight
- woc standard water flow rate at cooling capacity
- woh standard water flow rate at heating capacity
- temperature difference between air temperature entering the heat exchanger and water supply temperature
- Δtp temperature difference between room air and primary air
- $\Delta p_w$  water-side pressure loss



## Induction units for perimeter installation Type HFL, four-pipe system – cooling and heating

#### **Specification**

Induction unit with two separate heat exchangers for heating and cooling the secondary air.

Adjustment of the bypass dampers for air-side control with a built-in pneumatic or electric actuator.

Vertical or horizontal installation.

Air connection on the right, left or from below.

Water connection on the right or left (opposite to the air connection).

#### Dimensions

| Size | A      | <b>B</b> | <b>C</b> | D      |
|------|--------|----------|----------|--------|
|      | [inch] | [inch]   | [inch]   | [inch] |
|      | [mm]   | [mm]     | [mm]     | [mm]   |
| 500  | 19.57  | 18.39    | 20.83    | 27.13  |
|      | (497)  | (467)    | (529)    | (689)  |
| 630  | 25.28  | 24.09    | 26.53    | 32.83  |
|      | (642)  | (612)    | (674)    | (834)  |
| 800  | 31.38  | 30.2     | 32.64    | 38.94  |
|      | (797)  | (767)    | (829)    | (989)  |
| 1000 | 39.25  | 38.07    | 40.51    | 46.81  |
|      | (997)  | (967)    | (1029)   | (1189) |
| 1250 | 48.9   | 47.72    | 50.16    | 56.46  |
|      | (1242) | (1212)   | (1274)   | (1434) |

#### Selection

The technical specifications on the following page are valid under the following conditions:

- Selection of unit: for standard water flow rates
  - with filter
  - with rubber nozzles
  - with air outlet neck
  - without casing

Corrections for other water quantities, see page 23 and 24.

Without filter: output increases by 5%.

With aluminum nozzles: sound power level plus 2 - 3 dB(A).

According to room configuration, sound pressure level reduced by 2 - 7 dB(A).

For other conditions the stated performance data may vary.

The heating performance data for natural convection  $\mathsf{Q}_{\mathsf{Ec}}$  are based on the following:

Room air temperature 68 °F (standard water flow rate) Water supply temperature 158 °F  $\rightarrow \Delta t = 90 F$ 



© LTG Incorporated • PO Box 2889 • Spartanburg, S.C. 29304, USA Phone +1 864 599-6340, Fax +1 864-6344 • info@LTG-INC.net • www.LTG-INC.net Former editions are invalid • Subject to technical modifications



## Induction units for perimeter installation Type HFL, four-pipe system – cooling and heating

gpm

gpm

#### Technical data size 500

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t⁻1 |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------|
| 0.8                            | 18<br>24<br>29          | 26<br>25<br>28             |    | 19.0<br>24.6<br>32.2                              | 45.5<br>51.2<br>55.0                              | 34.1<br>37.9<br>41.7                  |
| 1.0                            | 18<br>24<br>29          | 28<br>27<br>29             |    | 19.0<br>24.6<br>32.2                              | 49.3<br>55.0<br>60.7                              | 36.0<br>39.8<br>43.6                  |
| 1.2                            | 18<br>24<br>29<br>35    | 29<br>32<br>30<br>33       |    | 19.0<br>24.6<br>32.2<br>37.9                      | 51.2<br>56.9<br>62.5<br>66.3                      | 36.0<br>39.8<br>43.6<br>47.4          |

| Q <sub>Ec</sub>            |     | = 856 BTU/h          |
|----------------------------|-----|----------------------|
| m                          |     | = 33.0 lbs           |
| ∆ <b>p<sub>w</sub></b> at  | Woc | = 7.2 feet with 0.88 |
| ∆ <b>p</b> <sub>w</sub> at | Woh | = 0.5 feet with 0.31 |

#### **Technical data size 630**

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 24<br>29<br>35          | 27<br>26<br>28             |    | 24.6<br>32.2<br>37.9                              | 60.7<br>66.3<br>72.0                              | 45.5<br>49.3<br>53.1                              |
| 1.0                            | 24<br>29<br>35          | 29<br>31<br>29             |    | 24.6<br>32.2<br>37.9                              | 64.4<br>72.0<br>77.7                              | 47.4<br>51.2<br>55.0                              |
| 1.2                            | 24<br>29<br>35<br>41    | 31<br>33<br>31<br>33       |    | 24.6<br>32.2<br>37.9<br>43.6                      | 68.2<br>73.9<br>81.5<br>85.3                      | 49.3<br>53.1<br>55.0<br>58.8                      |

| Q <sub>Ec</sub>           |     | = 1,013 BTU/h            |
|---------------------------|-----|--------------------------|
| m                         |     | = 37.4 lbs               |
| ∆ <b>p<sub>w</sub></b> at | Woc | = 7.2 feet with 1.10 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh | = 0.5 feet with 0.35 gpm |

#### **Technical data size 800**

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC    | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t⁻¹ |
|--------------------------------|-------------------------|----------------------------|-------|---------------------------------------------------|---------------------------------------------------|---------------------------------------|
| 0.8                            | 29<br>38<br>47          | 28<br>28<br>31             |       | 32.2<br>41.7<br>51.2                              | 75.8<br>85.3<br>91.0                              | 56.9<br>62.5<br>68.2                  |
| 1.0                            | 29<br>38<br>47          | 30<br>33<br>32             |       | 32.2<br>41.7<br>51.2                              | 81.5<br>91.0<br>98.6                              | 58.8<br>64.4<br>70.1                  |
| 1.2                            | 29<br>38<br>47<br>53    | 32<br>34<br>33<br>35       |       | 32.2<br>41.7<br>51.2<br>56.9                      | 85.3<br>94.8<br>104.2<br>108.0                    | 60.7<br>66.3<br>70.1<br>73.9          |
| Q <sub>Ec</sub>                |                         | = 1,                       | 187 B | TU/h                                              |                                                   |                                       |

| ·LC                       |     | ,                        |
|---------------------------|-----|--------------------------|
| m                         |     | = 44.0 lbs               |
| ∆ <b>p<sub>w</sub></b> at | Woc | = 7.2 feet with 1.32 gpm |
| ∆ <b>p<sub>w</sub></b> at | Woh | = 0.5 feet with 0.42 gpm |

#### Technical data size 1000

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 38<br>47<br>59          | 30<br>30<br>33             |    | 41.7<br>51.2<br>62.5                              | 94.8<br>102.4<br>113.7                            | 72.0<br>77.7<br>83.4                              |
| 1.0                            | 38<br>47<br>59          | 32<br>31<br>34             |    | 41.7<br>51.2<br>62.5                              | 100.5<br>109.9<br>119.4                           | 73.9<br>79.6<br>87.2                              |
| 1.2                            | 38<br>47<br>59<br>65    | 33<br>36<br>35<br>37       |    | 41.7<br>51.2<br>62.5<br>70.1                      | 106.1<br>115.6<br>127.0<br>130.8                  | 75.8<br>81.5<br>89.1<br>91.0                      |
| Q <sub>Ec</sub>                | = 1,433 BTU/h           |                            |    |                                                   |                                                   | •                                                 |

Q<sub>Ec</sub> m

= 52.8 lbs

= 7.2 feet with 1.54 gpm  $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oc}}$ ∆p<sub>w</sub> at w<sub>oh</sub> = 0.5 feet with 0.48 gpm

#### Technical data size 1250

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 47<br>59<br>74          | 32<br>32<br>36             |    | 51.2<br>62.5<br>79.6                              | 121.3<br>132.7<br>145.9                           | 91.0<br>98.6<br>108.0                             |
| 1.0                            | 47<br>59<br>74          | 33<br>36<br>37             |    | 51.2<br>62.5<br>79.6                              | 128.9<br>142.2<br>155.4                           | 94.8<br>100.5<br>109.9                            |
| 1.2                            | 47<br>59<br>74<br>88    | 34<br>37<br>38<br>41       |    | 51.2<br>62.5<br>79.6<br>94.8                      | 136.5<br>147.8<br>164.9<br>172.5                  | 96.7<br>106.1<br>111.8<br>119.4                   |

**Q**Ec = 1,726 BTU/h m = 63.8 lbs  $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oc}}$  = 7.2 feet with 1.85 gpm

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$  = 0.5 feet with 0.67 gpm

- **Δp** static pressure at the primary air socket
- **V**<sub>P</sub> primary air flow rate (± 10 %)
- L<sub>wA</sub> sound power (± 3 dB)
- Q<sub>P</sub> cool. capacity of primary air (fresh air) (± 5 %)
- **Q**<sub>c</sub> cool. cap., secondary air (heat exch.) (± 5 %)
- **Q**<sub>h</sub> heating capacity, secondary air (± 5 %)
- **Q**<sub>Ec</sub> heating capacity with natural convection
- m weight
- woc standard water flow rate at cooling capacity
- woh standard water flow rate at heating capacity
- Δt - temperature difference between air temperature entering the heat exchanger and water supply temperature
- Δtp temperature difference between room air and primary air
- Δp<sub>w</sub> water-side pressure loss



## Induction units for perimeter installation Type HFH, four-pipe system – cooling and heating

#### Specification

Induction unit with two separate heat exchangers for heating and cooling the secondary air.

Adjustment of the bypass dampers for air-side control with a built-in pneumatic or electric actuator.

High heating capacity for natural convection.

Vertical or horizontal installation.

Water and air connection separately, on the right or left.

#### Dimensions

| Size | A      | <b>B</b> | <b>C</b> | D      |
|------|--------|----------|----------|--------|
|      | [inch] | [inch]   | [inch]   | [inch] |
|      | [mm]   | [mm]     | [mm]     | [mm]   |
| 500  | 19.57  | 18.39    | 20.83    | 27.24  |
|      | (497)  | (467)    | (529)    | (692)  |
| 630  | 25.28  | 24.09    | 26.53    | 32.95  |
|      | (642)  | (612)    | (674)    | (837)  |
| 800  | 31.38  | 30.2     | 32.64    | 30.06  |
|      | (797)  | (767)    | (829)    | (992)  |
| 1000 | 39.25  | 38.07    | 40.51    | 46.93  |
|      | (997)  | (967)    | (1029)   | (1192) |
| 1250 | 48.9   | 47.72    | 50.16    | 56.57  |
|      | (1242) | (1212)   | (1274)   | (1437) |

#### Selection

The technical specifications on the following page are valid under the following conditions:

Selection of unit: - for standard water flow rates

- with filter
- with rubber nozzles
- with air outlet neck
- without casing

Corrections for other water quantities, see page 23 and 24.

Without filter: output increases by 5%.

With aluminum nozzles: sound power level plus 2 - 3 dB(A).

According to room configuration, sound pressure level reduced by 2 - 7 dB(A).

For other conditions the stated performance data may vary.

The heating performance data for natural convection  $\mathsf{Q}_{\mathsf{Ec}}$  are based on the following:

Room air temperature 68 °F (standard water flow rate) Water supply temperature 158 °F  $\rightarrow \Delta t = 90 F$ 



© LTG Incorporated • PO Box 2889 • Spartanburg, S.C. 29304, USA Phone +1 864 599-6340, Fax +1 864-6344 • info@LTG-INC.net • www.LTG-INC.net Former editions are invalid • Subject to technical modifications



## Induction units for perimeter installation Type HFH, four-pipe system – cooling and heating

#### Technical data size 500

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 18<br>24<br>29          | 26<br>25<br>28             |    | 19.0<br>24.6<br>32.2                              | 51.2<br>56.9<br>62.5                              | 32.1<br>37.9<br>43.6                              |
| 1.0                            | 18<br>24<br>29          | 28<br>27<br>29             |    | 19.0<br>24.6<br>32.2                              | 55.0<br>60.7<br>66.3                              | 36.0<br>39.8<br>43.6                              |
| 1.2                            | 18<br>24<br>29<br>35    | 29<br>32<br>30<br>33       |    | 19.0<br>24.6<br>32.2<br>37.9                      | 56.9<br>64.4<br>70.1<br>73.9                      | 37.9<br>41.7<br>45.5<br>47.4                      |

| Q <sub>Ec</sub>            |                 | = 1,204 BTU/h            |
|----------------------------|-----------------|--------------------------|
| m                          |                 | = 35.2 lbs               |
| ∆ <b>p<sub>w</sub></b> at  | w <sub>oc</sub> | = 7.2 feet with 0.88 gpm |
| ∆ <b>p</b> <sub>w</sub> at | Woh             | = 0.5 feet with 0.31 gpm |

#### **Technical data size 630**

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 24<br>29<br>35          | 27<br>26<br>28             |    | 24.6<br>32.2<br>37.9                              | 68.2<br>73.9<br>79.6                              | 47.4<br>51.2<br>55.0                              |
| 1.0                            | 24<br>29<br>35          | 29<br>31<br>29             |    | 24.6<br>32.2<br>37.9                              | 73.9<br>79.6<br>85.3                              | 49.3<br>51.2<br>55.0                              |
| 1.2                            | 24<br>29<br>35<br>41    | 31<br>33<br>31<br>33       |    | 24.6<br>32.2<br>37.9<br>43.6                      | 77.7<br>85.3<br>89.1<br>94.8                      | 51.2<br>53.1<br>56.9<br>60.7                      |

| Q <sub>Ec</sub>            |     | = 1,426 BTU/h            |
|----------------------------|-----|--------------------------|
| m                          |     | = 41.8 lbs               |
| ∆ <b>p<sub>w</sub></b> at  | Woc | = 7.2 feet with 1.10 gpm |
| ∆ <b>p</b> <sub>w</sub> at | Woh | = 0.5 feet with 0.35 gpm |

#### **Technical data size 800**

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm]     | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t⁻¹ |  |
|--------------------------------|-----------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------|--|
| 0.8                            | 29<br>38<br>47              | 28<br>28<br>31             |    | 32.2<br>41.7<br>51.2                              | 87.2<br>94.8<br>102.4                             | 58.8<br>64.4<br>70.1                  |  |
| 1.0                            | 29<br>38<br>47              | 30<br>33<br>32             |    | 32.2<br>41.7<br>51.2                              | 92.9<br>102.4<br>108.0                            | 60.7<br>66.3<br>72.0                  |  |
| 1.2                            | 29<br>38<br>47<br>53        | 32<br>34<br>33<br>35       |    | 32.2<br>41.7<br>51.2<br>56.9                      | 96.7<br>106.1<br>113.7<br>119.4                   | 62.5<br>68.2<br>72.0<br>75.8          |  |
| Q <sub>Ec</sub><br>m           | = 1,675 BTU/h<br>= 48.4 lbs |                            |    |                                                   |                                                   |                                       |  |

| m                         |     | = 48.4 lbs          |
|---------------------------|-----|---------------------|
| ∆ <b>p<sub>w</sub></b> at | Woc | = 7.2 feet with 1.3 |
| A                         |     |                     |

.32 gpm

= 0.5 feet with 0.42 gpm ∆**p<sub>w</sub>** at Woh

#### Technical data size 1000

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t⁻1 |  |  |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------|--|--|
| 0.8                            | 38<br>47<br>59          | 30<br>30<br>33             |    | 41.7<br>51.2<br>62.5                              | 106.1<br>115.6<br>125.1                           | 72.0<br>79.6<br>87.2                  |  |  |
| 1.0                            | 38<br>47<br>59          | 32<br>31<br>34             |    | 41.7<br>51.2<br>62.5                              | 113.7<br>123.2<br>132.7                           | 75.8<br>81.5<br>89.1                  |  |  |
| 1.2                            | 38<br>47<br>59<br>65    | 33<br>36<br>35<br>37       |    | 41.7<br>51.2<br>62.5<br>70.1                      | 121.3<br>130.8<br>140.3<br>144.1                  | 77.7<br>83.4<br>91.0<br>94.8          |  |  |
|                                |                         |                            |    |                                                   |                                                   |                                       |  |  |

Q<sub>Ec</sub> = 2,027 BTU/h m = 57.2 lbs

= 7.2 feet with 1.54 gpm  $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oc}}$ ∆p<sub>w</sub> at w<sub>oh</sub> = 0.5 feet with 0.48 gpm

## Technical data size 1250

| <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>wA</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------------------------------|-------------------------|----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0.8                            | 47<br>59<br>74          | 32<br>32<br>36             |    | 51.2<br>62.5<br>79.6                              | 138.4<br>149.7<br>161.1                           | 92.9<br>100.5<br>109.9                            |
| 1.0                            | 47<br>59<br>74          | 33<br>36<br>37             |    | 51.2<br>62.5<br>79.6                              | 147.8<br>159.2<br>170.6                           | 96.7<br>102.4<br>111.8                            |
| 1.2                            | 47<br>59<br>74<br>88    | 34<br>37<br>38<br>41       |    | 51.2<br>62.5<br>79.6<br>94.8                      | 155.4<br>168.7<br>182.0<br>193.3                  | 100.5<br>106.1<br>113.7<br>123.2                  |

**Q**Ec = 2,453 BTU/h m = 68.2 lbs = 7.2 feet with 1.85 gpm  $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oc}}$ 

= 0.5 feet with 0.67 gpm ∆p<sub>w</sub> at w<sub>oh</sub>

- **Δp** static pressure at the primary air socket
- **V**<sub>P</sub> primary air flow rate (± 10 %)
- $L_{wA}$  sound power (± 3 dB)
- Q<sub>P</sub> cool. capacity of primary air (fresh air) (± 5 %)
- **Q**<sub>c</sub> cool. cap., secondary air (heat exch.) (± 5 %)
- **Q**<sub>h</sub> heating capacity, secondary air (± 5 %)
- **Q**<sub>Ec</sub> heating capacity with natural convection
- weight m
- woc standard water flow rate at cooling capacity
- woh standard water flow rate at heating capacity
- Δt - temperature difference between air temperature entering the heat exchanger and water supply temperature
- Δtp temperature difference between room air and primary air
- Δp<sub>w</sub> water-side pressure loss



## Induction units for perimeter installation Perimeter displacement induction unit type QHG

#### View of unit



LTG perimeter displacement induction unit type QHG (example with complete control unit (optional))

The LTG perimeter displacement induction unit type QHG consists of a two-row heat exchanger for heating and cooling and a variable air displacement distributing box to adapt to different sill geometries.

#### **Advantages**

#### Comfort

- High thermal comfort due to displacement effect.
- Improved indoor air quality (IAQ) as pollutants are removed from the occupied zone by ascending convection currents.
- Quick reduction of temperature difference between supply and room air.

#### • Economy

- Energy savings by directing the cool air flow from the floor upwards.
- Heating and cooling in one unit.
- Simple installation.
- Flexibility
- Centralized zone control.
- Outlet can be adapted to suit various sill heights and widths.
- Selection
- The sizing of the units is done with LTG selection software.
- LEED credits

Perimeter displacement sill installation. (smoke picture in three time intervals)

#### **Functional principle**

Primary air, which is discharged from the nozzles at high speed, draws secondary air from the room through the heat exchanger due to the induction effect. Based on the water temperature in the heat exchanger, the air is either heated or cooled. The secondary air then enters the perimeter displacement distributing box along with the primary air.

Uniformity of discharge over the entire outlet height and width is guaranteed by specially arranged guide vanes in the distributing box. An additional induction effect is achieved by the special arrangement of the outlet openings, resulting in a quick reduction of temperature differences.

When designing the sill, the directions (see page 21) will have to be followed to ensure a trouble free operation of the ventilation system. The LTG Engineering Services are at your disposal to discuss any technical details.







© LTG Incorporated • PO Box 2889 • Spartanburg, S.C. 29304, USA Phone +1 864 599-6340, Fax +1 864-6344 • info@LTG-INC.net • www.LTG-INC.net Former editions are invalid • Subject to technical modifications



## Induction units for perimeter installation Perimeter displacement induction unit type QHG

#### Design

Torsion-resistant casing of galvanized sheet metal. Heat exchanger designed for high output, consisting of copper tubes with press-fitted aluminum fins. Maximum operating pressure (standard version): 14.5 psi (10 bar). Replaceable primary air nozzles of plastic, designed for induction with high efficiency at low noise and effective reflection of the primary noise.

Connection for hot and cold water, condensate and primary air on the side of the unit.

Primary air socket of plastic with an outer diameter of 4" (100 mm).

Condensate tray of galvanized sheet metal with an optional 19/32" diameter condensate drain connection on request.

Also on request, self-extinguishing easily replaceable secondary air filter of synthetically bonded polyamide fibers.

Easily detachable distribution box with guide vanes for air flow deflection at low pressure loss for uniform discharge and a secondary induction effect, adaptable to varying sill heights and widths.

#### **Product range**

| Size:          | 500   | 630 | 800 | 1000 | 1250 |
|----------------|-------|-----|-----|------|------|
| Outlet length: | 31.5" | 40" | 47" | 55"  | 63"  |

The above mentioned outlet widths are standard and may be adjusted to the sill, if required (\*).

The standard outlet height is 16.5" (420 mm).

#### Accessories, special versions

- Optional as a two-pipe induction unit, for heating or alternatively cooling only.
- Galvanized condensate tray with drainage connection.
- Primary air flow balancing damper.
- Non-combustible aluminum nozzles and primary air sockets of sheet steel for improved fire safety.
- Easy-to-replace self-extinguishing secondary air filter.
- Full-way valve with 3 point control (24 V)
- Master/slave control.

#### Dimensions

| Size | A      | B      | C      | D*     | Weight |
|------|--------|--------|--------|--------|--------|
|      | [inch] | [inch] | [inch] | [inch] | [lbs]  |
|      | [mm]   | [mm]   | [mm]   | [mm]   | [kg]   |
| 500  | 19.57  | 21.14  | 23.03  | 31.5   | 33     |
|      | (497)  | (537)  | (585)  | (800)  | (15)   |
| 630  | 25.28  | 26.85  | 28.74  | 39.37  | 41.8   |
|      | (642)  | (682)  | (730)  | (1000) | (19)   |
| 800  | 31.38  | 32.95  | 34.84  | 47.24  | 48.4   |
|      | (797)  | (837)  | (885)  | (1200) | (22)   |
| 1000 | 39.25  | 40.83  | 42.72  | 55.12  | 59.4   |
|      | (997)  | (1037) | (1085) | (1400) | (27)   |
| 1250 | 48.9   | 50.47  | 52.56  | 62.99  | 72.6   |
|      | (1242) | (1282) | (1335) | (1600) | (33)   |



![](_page_21_Picture_0.jpeg)

## Induction units for perimeter installation Perimeter displacement induction unit type QHG

#### Technical data size 500

| nozzle | <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | <b>L<sub>A18</sub></b><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>C</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h∙∆t <sup>-1</sup> |
|--------|--------------------------------|-------------------------|-----------------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Y      | 0.8<br>1.2<br>1.6              | 10<br>12<br>14          | 19<br>25<br>28                    |    | 13.3<br>17.1<br>19.0                              | 37.9<br>45.5<br>49.3                              | 28.4<br>34.1<br>36.0                              |
| А      | 0.8<br>1.2<br>1.6              | 15<br>18<br>21          | 21<br>25<br>29                    |    | 19.0<br>24.6<br>28.4                              | 43.6<br>49.3<br>55.0                              | 32.2<br>37.9<br>41.7                              |
| в      | 0.8<br>1.2<br>1.6              | 21<br>25<br>28          | 22<br>27<br>31                    |    | 28.4<br>34.1<br>37.9                              | 49.3<br>55.0<br>58.8                              | 36.0<br>41.7<br>45.5                              |

Q<sub>Ec</sub> ∆p<sub>w</sub>at w<sub>oc</sub>

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$ 

= 426 BTU/h = 0.7 feet with 0.35 gpm

= 0.7 feet with 0.35 gpm

#### Technical data size 630

| nozzle | <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | <b>L<sub>A18</sub></b><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>C</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h∙∆t <sup>-1</sup> |
|--------|--------------------------------|-------------------------|-----------------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Y      | 0.8<br>1.2<br>1.6              | 14<br>16<br>19          | 20<br>26<br>30                    |    | 19.0<br>22.7<br>24.6                              | 49.3<br>56.9<br>60.7                              | 36.0<br>41.7<br>45.5                              |
| А      | 0.8<br>1.2<br>1.6              | 19<br>24<br>28          | 22<br>28<br>31                    |    | 26.5<br>32.2<br>37.9                              | 55.0<br>64.4<br>70.1                              | 41.7<br>47.4<br>51.2                              |
| в      | 0.8<br>1.2<br>1.6              | 27<br>33<br>38          | 24<br>29<br>33                    |    | 36.0<br>43.6<br>51.2                              | 60.7<br>70.1<br>75.8                              | 45.5<br>51.2<br>56.9                              |

Technical data size 800

| nozzle | <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | L <sub>A18</sub><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>c</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> |
|--------|--------------------------------|-------------------------|-----------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Y      | 0.8<br>1.2<br>1.6              | 16<br>21<br>24          | 22<br>28<br>31              |    | 22.7<br>28.4<br>32.2                              | 60.7<br>72.0<br>77.7                              | 45.5<br>53.1<br>58.8                              |
| А      | 0.8<br>1.2<br>1.6              | 25<br>30<br>35          | 24<br>29<br>33              |    | 34.1<br>39.8<br>47.4                              | 70.1<br>81.5<br>89.1                              | 53.1<br>60.7<br>66.3                              |
| В      | 0.8<br>1.2<br>1.6              | 34<br>41<br>48          | 26<br>32<br>35              |    | 45.5<br>55.0<br>64.4                              | 77.7<br>89.1<br>96.7                              | 58.8<br>66.3<br>72.0                              |

| Q <sub>Ec</sub>            |     | = 682 BTU/h     |
|----------------------------|-----|-----------------|
| ∆ <b>p</b> <sub>w</sub> at | Woc | = 1.7 feet with |

= 1.7 feet with 0.53 gpm

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$  = 1.0 feet with 0.53 gpm

#### Technical data size 1000

| nozzle | <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | <b>L<sub>A18</sub></b><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>C</sub>/∆t</b><br>BTU/h•∆t <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h∙∆t <sup>-1</sup> |
|--------|--------------------------------|-------------------------|-----------------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Y      | 0.8<br>1.2<br>1.6              | 20<br>25<br>28          | 24<br>29<br>33                    |    | 26.5<br>34.1<br>37.9                              | 75.8<br>89.1<br>98.6                              | 56.9<br>66.3<br>73.9                              |
| А      | 0.8<br>1.2<br>1.6              | 29<br>36<br>41          | 26<br>31<br>35                    |    | 39.8<br>47.4<br>55.0                              | 87.2<br>100.5<br>109.9                            | 66.3<br>75.8<br>81.5                              |
| в      | 0.8<br>1.2<br>1.6              | 41<br>49<br>57          | 29<br>34<br>38                    |    | 55.0<br>66.3<br>75.8                              | 96.7<br>109.9<br>119.4                            | 72.0<br>83.4<br>89.1                              |

**Q<sub>Ec</sub>** = 853 BTU/h

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oc}}$  = 3.3 feet with 0.66 gpm

 $\Delta \mathbf{p}_{\mathbf{w}}$  at  $\mathbf{w}_{\mathbf{oh}}$  = 2.0 feet with 0.66 gpm

#### Technical data size 1250

| nozzle | <b>Δp</b><br>"H <sub>2</sub> O | V <sub>P</sub><br>[cfm] | <b>L<sub>A18</sub></b><br>[dB(A)] | NC | <b>Q<sub>P</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>C</sub>/Δt</b><br>BTU/h•Δt <sup>-1</sup> | <b>Q<sub>h</sub>/∆t</b><br>BTU/h•∆t⁻¹ |
|--------|--------------------------------|-------------------------|-----------------------------------|----|---------------------------------------------------|---------------------------------------------------|---------------------------------------|
| Y      | 0.8<br>1.2<br>1.6              | 27<br>33<br>38          | 27<br>32<br>35                    |    | 36.0<br>43.6<br>51.2                              | 76.7<br>111.8<br>121.3                            | 72.0<br>83.4<br>91.0                  |
| А      | 0.8<br>1.2<br>1.6              | 39<br>48<br>55          | 29<br>34<br>38                    |    | 53.1<br>64.4<br>73.9                              | 108.0<br>125.1<br>138.4                           | 81.5<br>94.8<br>102.4                 |
| в      | 0.8<br>1.2<br>1.6              | 54<br>66<br>76          | 33<br>38<br>42                    |    | 72.0<br>89.1<br>102.4                             | 121.3<br>138.4<br>149.7                           | 91.0<br>104.2<br>111.8                |

Q<sub>Ec</sub>

= 1,058 BTU/h

- Δp static pressure at the primary air socket
- **V**<sub>P</sub> primary air flow rate (± 10 %)
- LA18 sound power level at 18 m<sup>2</sup> Sabine
- ${f Q}_{P}$  cool. capacity of primary air (fresh air) (± 5 %) (therm. room load  $\mu_{T}$  = 0,8)
- Q<sub>c</sub> cooling capacity, secondary air (heat exch.) (± 5 %)
- **Q**<sub>h</sub> heating capacity, secondary air (± 5 %)
- $\mathbf{Q}_{\mathbf{Ec}}$  heating capacity with natural conv.  $\Delta t = 90 \text{ F}$
- woc standard water flow rate at cooling capacity
- woh standard water flow rate at heating capacity
- Δt temperature difference between air temperature entering the heat exchanger and water supply temperature
- Δt<sub>P</sub> temperature difference between room air and primary air

![](_page_22_Picture_0.jpeg)

![](_page_22_Figure_2.jpeg)

Water-side pressure loss and <u>cooling</u> capacity with different water flow rates Induction units type HFG with bypass, HFG-0 (2-pipe system), HFL, HFH – 6-tube cooler

Water-side pressure loss and <u>heating</u> capacity with different water flow rates Induction units type HFG with bypass, HFG-0 (2-pipe system), HFL, HFH – 6-tube heater

![](_page_22_Figure_5.jpeg)

**Note:** The minimum water flow rate must not be lower than 20% of the standard flow rate for cooling, and 40% for heating, considering the water-side pressure compensation.

![](_page_23_Picture_0.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

Water-side pressure loss and <u>heating</u> capacity with different water flow rates Type HFL, HFH – 4-tube heater

![](_page_23_Figure_5.jpeg)

**Note:** The minimum water flow rate must not be lower than 20% of the standard flow rate for cooling, and 40% for heating, considering the water-side pressure compensation.

![](_page_24_Picture_0.jpeg)

## Klimavent<sup>®</sup> induction units for perimeter installation Type HFG-0 (4-tube system), HFS, QHG Water-side pressure loss and <u>cooling</u> capacity with different water flow rates

6.60 120 Cooling capacity in [%] of the nominal capacity  ${\rm Q_c}$  00 00 003.30 Water-side pressure loss Δp<sub>w</sub> [ft H<sub>2</sub>O] 1.65 0.66 Size 1250 Size 1000 Size 800 Size 630 Size 500 0.33 40 0.5 0.75 0.25 0.375 20 40 60 80 100 120 140 Water flow rate in % of the standard water flow rate Water flow rate w [gpm]

Water-side pressure loss and heating capacity with different water flow rates

![](_page_24_Figure_4.jpeg)

**Note:** The minimum water flow rate must not be lower than 20% of the standard flow rate for cooling, and 40% for heating, considering the water-side pressure compensation.

![](_page_25_Picture_0.jpeg)

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

Water-side pressure loss and <u>heating</u> capacity with different water flow rates Type HFK-0, 4-pipe system

![](_page_25_Figure_5.jpeg)

**Note:** The minimum water flow rate must not be lower than 20% of the standard flow rate for cooling, and 40% for heating, considering the water-side pressure compensation.

# Induction units for perimeter installation Selection example

#### Set values

For this selection example the following unit was selected:

| <ul> <li>type/size</li> <li>primary air volume</li> <li>static pressure at the primary air socket</li> </ul>        | V <sub>P</sub><br>Др            | HFL 800 (see pages 16/17)<br>38 cfm<br>1"H <sub>2</sub> O                        |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|
| Performance data                                                                                                    |                                 |                                                                                  |
| For the induction unit type HFL 800, the following valu                                                             | es result from the table o      | n page 17:                                                                       |
| - sound power level                                                                                                 | L <sub>wA</sub>                 | 33 dB(A)                                                                         |
| <ul> <li>specific cooling capacity of primary air</li> </ul>                                                        | Q <sub>P</sub> /∆t <sub>P</sub> | 41.7 BTU/h*Δt                                                                    |
| <ul> <li>specific cooling capacity of secondary air</li> <li>with a standard water flow sets of 200 kg/h</li> </ul> | Q <sub>c</sub> /∆t              | 91 BIU/h*Δt                                                                      |
| with a standard water now rate of 300 kg/n                                                                          | O. /At                          | 64 4 BTU/b*At                                                                    |
| with a standard water flow rate of 95 kg/h                                                                          | αη/Δι                           |                                                                                  |
| - natural convection                                                                                                | Q <sub>Ec</sub>                 | 1,187 BTU/h                                                                      |
| Cooling                                                                                                             |                                 |                                                                                  |
| Set values:                                                                                                         |                                 |                                                                                  |
| - room temperature in summer / suction air                                                                          |                                 |                                                                                  |
| temperature before entering the heat exchanger                                                                      |                                 |                                                                                  |
| (values may vary)                                                                                                   | t <sub>R/tA</sub>               | 79 °F                                                                            |
| - temperature of primary air                                                                                        | tp<br>^+-                       | 61 °F<br>t- t 70 °E 61 °E - <b>19 E</b>                                          |
| →<br>- temperature of cooling water system                                                                          |                                 | 63 °F                                                                            |
| ⇒                                                                                                                   | $\Delta t$                      | t <sub>A</sub> - t <sub>KWV</sub> = 79 °F - 63 °F = <b>16 F</b>                  |
| <ul> <li>wanted cooling capacity</li> </ul>                                                                         | Q <sub>c wanted</sub>           | 2,050 BTU/h                                                                      |
| resulting in:                                                                                                       |                                 |                                                                                  |
| - primary cooling capacity                                                                                          | Q <sub>P</sub>                  | 41.7 BTU/h*Δt • 18 F = <b>750 BTU/h</b>                                          |
| - required secondary cooling capacity (Q <sub>k wanted</sub> - QP)                                                  | Q <sub>c req</sub>              | 2,050 BTU/h - 750 BTU/h = <b>1,300 BTU/h</b>                                     |
| - potential secondary cooling capacity                                                                              | Q <sub>c</sub>                  | 91 BIU/N $\Delta$ [ • 16 F = 1,456 BIU/N<br>1 200 BTU/b / 1456 BTU/b = 90 %      |
| - (see diagram on page 23) $\Rightarrow$ 67 % of the standard w                                                     | ater flow rate                  | $1.32 \text{ apm} \cdot 0.67 = 0.88 \text{ apm}$                                 |
| - cooling water return temperature                                                                                  | t <sub>KWR</sub>                | 65.5 F                                                                           |
| calculated from: $Q = m \cdot c \cdot \Delta t$                                                                     |                                 |                                                                                  |
| $t_{KWR} = Q_{k erf.SK} / (m \cdot c) + t_{KWV} = 380 / (201 \cdot 1, 16) + 17$                                     | [K]                             |                                                                                  |
| - water-side pressure loss (see diagram on page 32)                                                                 | Δp <sub>W</sub>                 | 3.35 feet                                                                        |
| Heating                                                                                                             |                                 |                                                                                  |
| Set values:                                                                                                         |                                 |                                                                                  |
| - room temperature in winter / suction air                                                                          |                                 |                                                                                  |
| temperature before entering the heat exchanger                                                                      |                                 |                                                                                  |
| (values may vary) t <sub>R/tA</sub>                                                                                 | /1.5 °F                         | 61 °F                                                                            |
| ⇒                                                                                                                   | Δtp                             | $t_{\rm P}$ - $t_{\rm P}$ = 71.5 °F - 61 °F = <b>10.5 F</b>                      |
| <ul> <li>temperature of heating water system</li> </ul>                                                             | t <sub>HWV</sub>                | 158 °F                                                                           |
| $\Rightarrow$                                                                                                       | Δt                              | t <sub>HWV</sub> - t <sub>R</sub> = 158 °F - 71.5 °F = <b>86.5 F</b>             |
| <ul> <li>wanted heating capacity</li> </ul>                                                                         | Q <sub>h wanted</sub>           | 4,100 BTU/h                                                                      |
| resulting in:                                                                                                       |                                 |                                                                                  |
| - primary capacity                                                                                                  | Q <sub>P</sub>                  | 41.7 BIU/h* $\Delta t \cdot 10.5 F = 438 BTU/h$                                  |
| - required secondary heating cap. (Qh wanted + QP)                                                                  | Q <sub>h req</sub>              | 4,100  BTU/n + 438  BTU/n = 4,338  BTU/n<br>64 4 BTU/b*At • 86 5 E = 5 570 BTU/b |
| - reduction of the standard capacity is necessary                                                                   | αn                              | 4.538 BTU/h / 5.570 BTU/h = <b>80</b> %                                          |
| - (see diagram on page 33) $\Rightarrow$ 60 % of the standard w                                                     | ater flow rate                  | 0.42 gpm • 0.6 = <b>0.25 gpm</b>                                                 |
| - heating water return temperature                                                                                  | t <sub>HWR</sub>                | 122 °F                                                                           |
| resulting from: $Q = m \cdot c \cdot \Delta t$                                                                      | K1                              |                                                                                  |
| - water-side pressure loss (see diagram on page 33)                                                                 | Δρω                             | 0.2 feet                                                                         |
|                                                                                                                     |                                 |                                                                                  |

Induction sill -USA-TP (08/11)

#### **Connection of units**

The following table states possible arrangements for the a/c units presented in our literature:

| Arrange-<br>ment       | Water<br>connection | Primary air connection | Damper<br>actuator | flute<br>actuator | Туре                                                          |
|------------------------|---------------------|------------------------|--------------------|-------------------|---------------------------------------------------------------|
| I<br>II                | R<br>L              | R<br>L                 | L<br>R             | -                 | HFG <sup>*)**)</sup> , HFH, HFK, HFL <sup>*)</sup> , HFS, QHG |
| ш                      | R                   | L                      | L                  | -                 | HFG, HFH, HFK, HFL, HFS, QHG                                  |
| IV                     | L                   | R                      | R                  | -                 | HFG, HFH, HFK, HFL, HFS, QHG                                  |
| V<br>VI<br>VII<br>VIII | R<br>L<br>R<br>L    | R<br>L<br>L<br>R       | R<br>L<br>R<br>L   | -<br>-<br>-       | HFG, HFK, QHG                                                 |

#### Legend:

L = left

R = right

Direction of view: view is always from the room towards the sill with the unit installed.

\*) Connection of primary air from below in the center (special version) only possible for HFG, HFL.

\*\*) HFG with bypass: no lateral wall suspension possible.

#### Actuators for damper-controlled units

The following damper actuators are available for damper-controlled LTG induction units:

**HF.-B:** Belimo actuator: 0 - 10 V, continuous

HF.-L: Siemens, Landis & Stäfa: 0 - 10 V, continuous; 3-point

HF.-P: LTG pneumatic actuator: 0.2 - 1.0 bar

#### Damper actuators for LTG A/C units:

| No. | Actuator type | Product<br>name         | Product description | Method of control                           | Operating<br>voltage |
|-----|---------------|-------------------------|---------------------|---------------------------------------------|----------------------|
| 1   | pneumatic     | LTG SMA                 | hoisting motor      | 3 - 14.5 psi<br>(on request 8.5 - 14.5 psi) |                      |
| 2   | electric      | Belimo LH 24 SR         | hoisting motor      | DC 2 - 10 V, continuous                     | AC 24 V              |
| 3   | electric      | Belimo LM 24 SR         | rotating motor      | DC 2 - 10 V, continuous                     | AC 24 V              |
| 4   | electric      | Landis & Gyr GDB 131.2E | hoisting motor      | 3-point                                     | AC 24 V              |
| 5   | electric      | Landis & Gyr GDB 131.1E | rotating motor      | 3-point                                     | AC 24 V              |
| 6   | electric      | Landis & Gyr GDB 161.2E | hoisting motor      | DC 0 - 10 V, continuous                     | AC 24 V              |
| 7   | electric      | Landis & Gyr GDB 161.1E | rotating motor      | DC 0 - 10 V, continuous                     | AC 24 V              |

The following actuators are available for damper-controlled LTG induction units:

#### Control:

| Unit types | Possible actuators (see above) | Full heating load | Neutral Bypass | Full cooling load |
|------------|--------------------------------|-------------------|----------------|-------------------|
| HFL, HFH   | 1                              | 3 psi             | 7 - 9 psi      | 14.5 psi          |
|            | 2.6                            | 2 V (0 V)         | 5 - 6 V        | 10 V              |
|            | 4.5                            | 3-point           | 3-point        | 3-point           |
| HFG***     | 1                              | 3 psi             | 14.5 psi       | 3 psi             |
| Heating    | 3.7                            | 2 V (0 V)         | 10 V           | 2 V (0 V)         |
| Cooling    | 5                              | 3-point           | 3-point        | 3-point           |

\* For design reasons, primary air connection and damper actuator cannot be on the same side of the unit. If the pneumatic/electric actuator is fully triggered (14.5 psi or 10 V), the unit will operate in cooling mode only with the primary air flow (second nozzle row open, heat exchanger and bypass closed).

- \*\* Dampers and flute are driven by separate motors being installed on alternate sides of the unit. If the flute drive is fully triggered, the second nozzle row is open (full load cooling).
- \*\*\* Floor mounted units: With the smallest control signal the heat exchanger is completely open with possibility for maximum cooling or heating load (bypass at > 3 psi or > 0 V signal).

![](_page_29_Picture_0.jpeg)

## Product Overview LTG Air-Water Systems

## LTG Induction – Induction Units

| Ceiling installation            | Sill Installation               | Floor Installation            |  |
|---------------------------------|---------------------------------|-------------------------------|--|
| HFF suite<br>SilentSuite        | HFV / HFVsf<br>System SmartFlow | HFB/HFBsf<br>System SmartFlow |  |
| LHG System Indivent®            | HFG                             |                               |  |
| HDF / HDFsf<br>System SmartFlow | QHG                             |                               |  |
| HDC                             |                                 |                               |  |

## LTG FanPower- Fan Coil Units

| Ceiling Installation | Sill Installation | Floor Installation |  |
|----------------------|-------------------|--------------------|--|
| LVC System Indivent® | VFC               | VKB                |  |
| <b>УКН</b>           | QVC               | <b>SKB</b>         |  |
| VKE                  |                   |                    |  |
| KFA cool wave®       |                   |                    |  |

## LTG Decentral – Decentralised Ventilation Units

| Ceiling Installation | Sill Installation |     | Floor Installation |                                             |
|----------------------|-------------------|-----|--------------------|---------------------------------------------|
| FVS Univent®         |                   | FVM |                    | FVD                                         |
|                      |                   |     | -                  | FVP <i>pulse</i><br>System PulseVentilation |

## Engineering Services

![](_page_29_Picture_9.jpeg)